We may entertain some fear that the style of scientific writing in the present day is becoming bald, careless, and even defective in philosophical accuracy. If so, the study of Mr. Babbage's writings would be the best antidote. 1 |
Babbage is remembered today primarily for his invention of the computer, and that invention is the subject of this thesis. However, Babbage's interests and labors in fact covered a very wide range of subjects, and to picture his life as predominantly devoted to the invention and unsuccessful construction of calculating machines would be misleading. It is therefore intended to provide here, by way of introduction, a general biographical sketch, although it must be both superficial and highly selective. 2
Charles Babbage was born on December 26, 1791. His father, Benjamin Babbage, was a partner in a London bank. After private tutoring and two private schools. Charles entered Cambridge University in 1810, attending first Trinity College and then Peterhouse, from which he graduated in 1814.
In June, 1814, Babbage married Georgians Whitmore, and they went to live at his father's house, at 5 Devonshire Street, London. The marriage produced eight children, but only three sons survived to adulthood. In early 1827, Babbage's father died, leaving him an estate of about 100,000 pounds; in the fall, Georgiana died. Considerably distraught, Babbage spent most of 1828 on a European tour, recovering his spirits. When he returned, he moved to a new house at 1 Dorset Street, Manchester Square, London, where he was to remain the rest of his life; the children were left in the care of his mother, in Devonshire Street.
Although Babbage .spent the rest of his life with his family around him only occasionally, he was by no means a solitary man. For many years he gave evening parties every Saturday during the season which were attended by some two to three hundred people, and to which invitations were in great demand. He was himself in great demand as a dinner guest, and he was acquainted with practically every prominent scientific, literary and social figure of the era.
Only in old age did he become somewhat crotchety. During the last ten years of his life a considerable part of his energy went into attempting to prevent organ grinders and other musicians from playing in the streets and soliciting money, as they interrupted his work and destroyed his concentration. His efforts were basically futile and became quite a preoccupation, yet they were not fundamentally eccentric, as many of Babbage's contemporaries agreed with him that street musicians were a genuine public nuisance. Babbage's campaign ended with his death on October 18, 1871.
Babbage's first mayor scientific interest was in mathematics. Having largely taught it to himself, he soon found that he knew more than his tutor at Cambridge. Finding that they could not fruitfully study mathematics as part of their formal education, Babbage and a number of friends, most notably John Herschel and George Peacock, formed themselves into the Analytical Society. As one of the main aims of this Society was to promote the notation for the calculus devised by Leibniz and in use on the Continent, as opposed to the Newtonian notation which was holding back British mathematics, Babbage suggested that they call their first volume of Memoirs: "The Principles of Pure D-ism in opposition to the Dot-age of the University."
They intended to alter the teaching of mathematics, and this required a textbook from which the new material could be learned; but as Babbage, Herschel and Peacock were not established figures, a work of their own would not be accepted; therefore they produced a translation of the Differential and Integral Calculus by Lacroix, which was published in 1816; a few years later two volumes of Examples to accompany the text were issued. Although there were some individuals and groups apart from the Analytical Society working toward the same ends, and although the important works published by the Society were mostly joint productions, Babbage, as the principal organizer of the Society, played a key role in the reform and revitalization of British mathematics in the first half of the nineteenth century.
By 1820, Babbage had published seventeen mathematical papers, and had established his name in scientific circles. In March, 1816, he had been elected to Fellowship in the Royal Society. That same month he first applied for a teaching position, one of a long series of jobs which he sought without success, despite the fact that he was often better qualified than the candidate who got the post. He concluded, probably correctly, that the positions were being handed out on the basis of social connection, not scientific merit.
Fortunately for Babbage, his father's wealth meant . that this failure to get a job did not force him out of science. This failure did, however, strengthen his belief in the importance of the reform of scientific institutions, and gave to his efforts in this regard a fervor, sometimes even a bitterness, that was to win him many enemies. 3
In 1820, Babbage played an important role in the foundation of the Astronomical Society of London (later the Royal Astronomical Society). He was not the dominant social or scientific figure among the founders - unlike his good friend John Herschel he did no significant original work in astronomy; but Babbage was largely responsible for the initial organization of the Society, and he served as its first Secretary.
It was while proofreading some tables being prepared for the Astronomical Society that Babbage developed an interest in calculating machines which led to his invention of the Difference Engine in 1822. His efforts to construct this machine, with massive if rather uneven government support, were his major preoccupation for over a decade. This will be described in detail in Chapter Two, but it is important to keep in mind at this point that it served to further divert him from a more conventional scientific career, as he was reluctant to take on any responsibilities which he felt would interfere with his completion of the Difference Engine.
However, Babbage's universal interests and boundless energy could not be channeled into a single project. In 1824, he was retained for a time as an advisor to a group of men intending to form a new life insurance company, but the firm was dissolved before it actually got launched. Another company offered to hire him as its manager, but he declined in order to devote his time to the Difference Engine. However, he wrote up what he had found out about the operation of existing insurance companies into a popular treatise on the subject, which appeared in English in 1826 and in German in 1827. Another 1826 publication was a laboriously prepared volume of logarithmic tables, which set a new standard for freedom from error; this volume appeared in several English and foreign editions.
While Babbage was on his European tour in 1828, following his wife's death, he attended the meeting in Berlin of the Gesellschaft Deutscher Naturforscher and Artze, organized by Alexander von Humboldt. Babbage was impressed by this organization, and on his return to England, he published an account of the meeting. At this time a considerable struggle was going on within the Royal Society over the question of its reform. Babbage became the leader of the group pushing for change by his publication, in 1834, of Reflections of the Decline of Science in England and on Some of its Causes. This book became the focus of a widespread and often bitter argument over whether English science, and particularly the Royal Society, deserved to be the pride or the disgrace of the nation. Eventually, the foundation in 1831 of the British Association for the Advancement of Science largely resolved this conflict, the Association being modeled on the.German Gesellschaft, which was much admired by the reformers. Although Babbage was a leading figure in the group that launched the Association, he did not play a vital role in the Association Itself.. He served as one of the three permanent Trustees of the Association from its beginning until August, 1838, but at that point a dispute over a supposed promise of the Presidency of the Association to Babbage caused him to resign, and he had little to do with the Association for the rest of his life. He was, however, responsible for forming the Statistical Section of the Association, and then, in 1834, for transforming it into the Statistical Society of London.
During this period Babbage also sought more general social reform as a candidate for a seat in Parliament in the elections of January, 1833. However, he did very badly, in part because of rumors that he had misappropriated funds given to him by the government for construction of the Difference Engine.
When Babbage undertook the construction of the Difference Engine, he had to become knowledgeable about machinery and manufacturing processes; to this end, he visited a large number of factories in various parts of England, and others during his tour of the Continent. His interest became more general, and his various findings and speculations appeared in 1832 in the book On the Economy of Machinery and Manufactures. This work, combining economics and operational research in a pioneering way, was immensely successful, being published in many England and American editions, and translated into most European languages. 4
In 1834, Babbage invented the Analytical Engine, and work on it was to absorb most of his energy for the rest of his life, although there were periods during which he laid it aside. This Engine and related matters will be discussed in Chapters Three and Four.
Throughout his life, Babbage advocated the application of scientific methods to practical problems. A good example of this was a long series of experiments he conducted in 1839 in connection with the disputes over the proper gauge for railway tracks. He obtained the loan of a railway car, and filled it with equipment which would automatically record on long rolls of paper the various forces to which the carriage was subjected, its speed, sway, and so on. He called for the installation on all engines of devices to record certain information on all trips, so that the causes of accidents could be studied after they occurred, in much the same way that airplanes now have black boxes to record pertinent flight data.
An accomplishment of which Babbage was particularly proud, but which did not prove to be influential, was his invention of a special mechanical notation, by means of which the character, function and motion of the different pieces of a machines could be symbolically represented on a drawing or schematic diagram. Babbage used this mechanical notation extensively while working on his own calculating machines, and he thought it would be most valuable if used generally by engineers and mechanics, even serving as an aid to invention itself. Although he tried to get publicity and acceptance for it, this notation was generally ignored, perhaps because it was too complex and arbitrary to be learned easily, and so geared to his own peculiar modes of thought that its personal value could not become a general one.
Babbage did make valuable contributions to almost every principal field of human endeavor, with the exception of music. He wrote on mathematics, physics, astronomy, geology, theology, economics, statistics and government, He wrote a satirical play; he invented the opthalmoscope and the method of distinguishing different lighthouses by coded occulatations; he was a master at undoing locks and ciphers; he was a pioneer of central heating and theatrical lighting. In all, he published some eighty books and papers during his life.
Many of Babbage's writings were brief and incomplete, often because they were intended as temporary diversions from his other work. Yet it is not true, as is sometimes charged, that little of his work was important. Nothing that he did had all the polish or perfection that could be desired, and no single achievement can be said to have been wholly worthy of him; but in several vital areas - mathematics, scientific organization, the application of science to technology, machining capabilities, and the application of mathematics to the study of society - his cumulative actions had a substantial impact on the development of British society.
Towards its end, Babbage's life appears rather sad, for he became somewhat bitter about his failure to gain the honor he felt he deserved, and he felt deeply the lack of any single monument to his abilities. Yet in the last analysis, Babbage's life cannot be judged by the sum of his accomplishments; quite apart from the truly prophetic quality of his invention of the Analytical Engine, we must say with one of his contemporaries:
Let it be granted that in his life there was much to cause disappointment, and that the results of his labours, however great, are below his powers. Can we withhold our tribute of admiration to one who throughout his long life inflexibly devoted his exertions to the most lofty subjects? . . . He nobly upheld the character of a discoverer and inventor, despising any less reward than to carry out the highest conception which his mind brought forth. His very failures arose from no want of industry or ability, but from excess of resolution that his aims should be at the very highest. 5
1. From obituary of Babbage in Nature, Vol. V (1871-72) p. 29.
2. As this biographical sketch is not intended to be definitive, no documentation will be provided. The sources of information on Babbage's life are discussed at length in the bibliographical appendix.
3. Ironically, the only distinguished scientific post that Babbage ever held was the Lucasian Professorship at Cambridge University, and it was not offered to his until after he no longer really wanted it. He accepted with reluctance, and served without distinction from 1829 to 1839,.when he resigned to devote all his energy to the Analytical Engine.
4. But it is not true that Babbage suggested uniform postage in this book, nor is there any evidence that he was instrumental in its adoption by the Post Office.
5. From the obituary of Babbage in Nature, Vol. V (1871-72), p. 28-29.